
Scaling Deep Learning
Peter Mendygral
pjm@cray.com

ALCF SDL Workshop 2018 Cray Inc. © 2018

Legal Disclaimer

2

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property

rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and

other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal

codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.

products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and

URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,

ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM, REVEAL. The following system family marks, and associated model number marks,

are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from

LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the

property of their respective owners.

ALCF SDL Workshop 2018 Cray Inc. © 2018

Motivation

● A trained neural network can be a powerful tool for
● Pattern recognition

● Classification

● Clustering

● Others…

● Scaling Deep Learning (DL) training is also a tool for
● Models that take a very long time to train (and have a very large training

dataset)

● Increasing the frequency at which models can be retrained with new or
improved data

● This talk reviews scaling DL training and topics that can be
important to successfully applying it

3

ALCF SDL Workshop 2018 Cray Inc. © 2018

Agenda

● HPC Attributes of Deep Learning

● TensorFlow on Theta

● Parallelization Methods for TensorFlow

● Convergence Considerations at Scale

● CPE ML Plugin Example

4

ALCF SDL Workshop 2018 Cray Inc. © 2018

HPC Attributes of Deep Learning

ALCF SDL Workshop 2018 Cray Inc. © 2018

HPC Attributes

● DL training is a classic high-performance computing

problem which demands:

● Large compute capacity in terms of FLOPs, memory capacity and

bandwidth

● A performant interconnect for fast communication of gradients and

model parameters

● Parallel I/O and storage with sufficient bandwidth to keep the

compute fed at scale

6

ALCF SDL Workshop 2018 Cray Inc. © 2018

● Data parallel training divides a global mini-batch of examples across
processes

● Each process computes gradients from their local mini-batch

● Average gradients across processes

● All processes update their local model with averaged gradients (all processes
have the same model)

● Not shown is the I/O activity of reading training samples (and possible
augmentation)

Data Parallelism - Collective-based Synchronous
SGD

Compute

intensive

Communication

intensive

Typically not

much compute

7

ALCF SDL Workshop 2018 Cray Inc. © 2018

Why do we want to scale?

● Deep Network Training
● We can strong scale training time-to-accuracy provided

● Number of workers (e.g., # nodes) << number of training examples

● Learning rate for particular batch size / scale is known

● Hyper-Parameter Optimization
● For problems and datasets where baseline accuracy is not known

● learning rate schedule

● momentum

● batch size

● Evolve topologies if good architecture is unknown (common with novel
datasets / mappings)
● Layer types, width, number filters

● Activation functions, drop-out rates

8

ALCF SDL Workshop 2018 Cray Inc. © 2018

TensorFlow on Theta

ALCF SDL Workshop 2018 Cray Inc. © 2018

TensorFlow

● Developed by Google

● Most popular DL framework

● Large open source community

● APIs for
● Python

● C++

● Go

● Java

● Optimized for CPU and GPU architectures

10

ALCF SDL Workshop 2018 Cray Inc. © 2018

TensorFlow on Theta

● Python 2.7 and 3.6 builds of TensorFlow prepared for this
workshop

● TensorFlow 1.5 with MKL-DNN optimizations for KNL

● Python 2.7 setup
module load cray-python/2.7.13.1

export PYTHONUSERBASE=/lus/theta-fs0/projects/SDL_Workshop/mendygra/pylibs

python –c “import tensorflow as tf”

● Python 3.6 setup
module load cray-python/3.6.1.1

export PYTHONUSERBASE=/lus/theta-fs0/projects/SDL_Workshop/mendygra/pylibs

python –c “import tensorflow as tf”

11

ALCF SDL Workshop 2018 Cray Inc. © 2018

Performance Tuning Tips for KNL
● Recommended MKL settings

● OMP_NUM_THREADS=62

● KMP_BLOCKTIME=0 (30 sometimes good too)

● KMP_AFFINITY=“granularity=fine,compact,1,0”

● TensorFlow thread settings

● num_inter_threads=3

● num_intra_threads=$OMP_NUM_THREADS

● Use NCHW data format (NHWC is TensorFlow default)

● Use the Dataset API to pipeline reading and preparing of input samples

● I/O bandwidth requirements for Dataset API (using dedicated preprocessing threads) can be estimated with

● B/s/node = (#processes/node) x (local mini-batch size) x (B/sample) / (batch time [s])

● Use lustre striping on sample data directory, for example:

● lfs setstripe –c 16 [samples directory]

● cp [dataset files] [samples directory]

12

ALCF SDL Workshop 2018 Cray Inc. © 2018

Parallelization Methods for DL

ALCF SDL Workshop 2018 Cray Inc. © 2018

Parallelization Techniques

● Data Parallelism
● As described earlier, divides global mini-batch among processes

● Two methods for this:
● Synchronous: single model (possibly replicated across all processes) updated with

globally averaged gradients every iteration

● Asynchronous: processes provide gradients every iteration but are allowed to fall out
of sync from one another. Processes each have their own model that may or may
not be the same as any other process

● Model Parallelism
● Single model with layers decomposed across processes

● Activations communicated between processes

● This talk will focus on synchronous data parallel approach

14

ALCF SDL Workshop 2018 Cray Inc. © 2018

Distributed TensorFlow

● TensorFlow has a native method for parallelism across nodes
● ClusterSpec API

● Uses gRPC layer in TensorFlow based on sockets

● Can be difficult to use and optimize

● User must specify
● hostnames and ports for all worker processes

● hostnames and ports for all parameter server processes (see next slide)

● # of workers

● # of parameter server processes

● Chief process of workers

15

ALCF SDL Workshop 2018 Cray Inc. © 2018

Distributed TensorFlow

● Number of parameter
servers (PS) processes to
use is not clear
● Too few results in many-to-

few comm pattern (very bad)
and stalls delivering updated
parameters

● Too many results in many-to-
many comm patter (also bad)

● Users typically have to pick
a scale and experiment for
best performance

16

ALCF SDL Workshop 2018 Cray Inc. © 2018

Distributed TensorFlow Scaling on Cray XC40 - KNL

17

0%

20%

40%

60%

80%

100%

120%

1 4 16 64

E
ff
ic

ie
n

c
y

Workers

ResNet-50 with 1 PS

From Mathuriya et al. @ NIPS 2017

Mini-batch size

(MBS)=128

ALCF SDL Workshop 2018 Cray Inc. © 2018

MPI-based Data Parallel TensorFlow

● The performance and usability issues with distributed TensorFlow
can be addressed by adopting an MPI communication model

● TensorFlow does have an MPI option, but it only replaces point to
point operations in gRPC with MPI
● Collective algorithm optimization in MPI not used

● Other frameworks, such as Caffe and CNTK, include MPI
collectives

● An MPI collective based approach would eliminate the need for PS
processes and likely be optimized without intervention from the
user

18

ALCF SDL Workshop 2018 Cray Inc. © 2018

Scalable Synchronous Data Parallelism

input

model

input

model

input

model

Update Update Update

add add addScalable Global Add

.

.

Device 1 Device 2 Device n

P P P

ΔP
Client Client Client

● Note there are no PS processes in this model

● Resources dedicated to gradient calculation

19

ALCF SDL Workshop 2018 Cray Inc. © 2018

Uber Horovod

20

● Uber open source addon for TensorFlow only that
replaces native optimizer class with a new class
● Horovod adds an allreduce between gradient computation

and model update in this class

● New Python class includes NCCL and MPI
collective reductions for gradient aggregation

● https://github.com/uber/horovod

● No modifications to TensorFlow source required
● User modifies Python training script instead

https://github.com/uber/horovod

ALCF SDL Workshop 2018 Cray Inc. © 2018

Cray Programming Environment Machine Learning
Plugin (CPE ML Plugin)

21

● DL communication plugin with Python and C APIs

● Optimized for TensorFlow but also portable to other frameworks
● Callable from C/C++ source

● Called from Python if data stored in NumPy arrays or Tensors

● Like Horovod does not require modification to TensorFlow source
● User modifies training script

● Uses custom allreduce specifically optimized for DL workloads
● Optimized for Cray Aries interconnect and IB for Cray clusters

● Tunable through API and environment variables

● Supports multiple gradient aggregations at once with thread teams
● Useful for Generative Adversarial Networks (GAN), for example

ALCF SDL Workshop 2018 Cray Inc. © 2018

Horovod / CPE ML Plugin – Throughput Scaling

22

32

128

512

2048

8192

32768

131072

1 4 16 64 256 1024

S
a

m
p

le
s

/s
e

c
 (

a
g

g
re

g
a

te
)

Nodes (GPUs)

Inception v3 Performance on XC50 (Piz Daint at CSCS)
– CPE ML Plugin ONLY

MBS=4 MBS=16 MBS=32

MBS=64 MBS=64 (gRPC) 200 x N

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

2 8 32 128 512

S
a

m
p

le
s

/s
e

c
 (

a
g

g
re

g
a

te
)

Nodes

ResNet50 Performance on XC40 (Cori KNL at NERSC)
Horovod and CPE ML Plugin

CPE ML Plugin - MBS=128 CPE ML Plugin - MBS=32 Horovod - MBS=32

CPE ML Plugin

1.8X faster than

gRPC at 128 nodes

1.4X faster than

Horovod at 128

nodes, 3.2X at

1024 nodes

ALCF SDL Workshop 2018 Cray Inc. © 2018

Convergence Considerations at
Scale

ALCF SDL Workshop 2018 Cray Inc. © 2018

Problems in Scaling DL Training

● Increasing workers increases the global batch size
● This reduces the number of updates to the model (iterations) per

epoch (full pass through dataset)

● Can require more iterations to converge to same validation accuracy
for models trained at smaller batch sizes

● Large-batch (LB) training can have different convergence
properties than Small-batch (SB) training
● LB training can lead to models which fail to generalize to validation

datasets
● LB training error can look similar to SB training error, but validation

error fails to improve

24

ALCF SDL Workshop 2018 Cray Inc. © 2018

Problems in Scaling DL Training

● Possible reasons for the observed failure to generalize

using large batch methods [2]:

● The model overfits

● Optimization is attracted to saddle-points

● Loss of the explorative properties gained with small batches

25

ALCF SDL Workshop 2018 Cray Inc. © 2018

Observations on Scaled Learning Rates
● Step 1) Start with common initial learning rate for selected optimizer (from Keras documentation)

● Adam -> 0.001

● RMSProp -> 0.001

● SGD -> 0.01

● Adagrad -> 0.01

● Adadelta -> 1.0

● Step 2) Multiply learning rate by N or Sqrt(N)
● N is the number of parallel processes

● Discussed in further detail on next slide

● Step 3) Decay learning rate during training (e.g., exponential decay)
● Setup a learning rate schedule using your initial learning rate as the starting state

● Learning rate typically lowered periodically or continuously

● Helps improve final accuracy

● Likely very important to reduce learning rate over time when initial learning rate scaled large

● Step 4) Run it
● Train and observe loss or training accuracy, check validation accuracy

● Adjust initial learning rate up if learning too slowly or down if model is not learning

● Repeat steps as needed to improve convergence and accuracy

26

ALCF SDL Workshop 2018 Cray Inc. © 2018

Learning Rate Scaling Rules

● Sqrt Scaling Rule:

● When the local minibatch size is multiplied by 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠, multiply the learning rate by 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠.

𝜂𝑖𝑛𝑖𝑡 = 𝜂𝑖𝑛𝑖𝑡 ∗ 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠

● Error on the mean only improves as sqrt(N_workers)

● Linear Scaling Rule:
● When the minibatch size is multiplied by N, multiply the learning rate by N.

𝜂𝑖𝑛𝑖𝑡 = 𝜂𝑖𝑛𝑖𝑡 ∗ 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠

● Naïve rule for scaling learning rate in distributed training but it works for some problems

● More attractive (when it works) because it shouldn’t require many additional iterations to reach same
accuracy

27

ALCF SDL Workshop 2018 Cray Inc. © 2018

Rules of Thumb

● 3 Remarks from Facebook Paper:
● “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour” [1]

● Momentum: If using momentum with learning rate absorbed into the update tensor, apply
momentum correction described in the paper
● Tensorflow:

● RMSProp momentum needs corrections

● GradientDescentOptimizer can ignore correction

● Anything using momentum, inspect further

● Batch-normalization
● Consider your local batch-size to be a hyper-parameter of the batch-normalization, so it affects the

loss computation locally, and the node efficiency

● Gradient Aggregation: Normalize the per-worker loss by global minibatch size, not local
● Already handled by parallel methods like gRPC, Horovod and CPE ML Plugin

28

ALCF SDL Workshop 2018 Cray Inc. © 2018

Other Rules of Thumb

● Optimizers can behave in unexpected ways as scale
increases
● At small scale (e.g., < 100 workers) errors from assumptions in

common optimizers also probably small

● Learning rate scaling rules and schedule may be sufficient

● At larger scales optimizers can break down and require
corrections

● Improved optimizers are likely required for very large global batch
sizes

29

ALCF SDL Workshop 2018 Cray Inc. © 2018

Warm-Up Iterations

● Linearly scaled learning rate
causes most problems early
in training [3]
● Design a warm-up set of

iterations to reduce these errors

● Once training settled on good
path, transition to larger
learning rate

● Can also use different
optimizers for each phase [5]

● Allows you to use
momentum and weight
decay

This 2 is a mistake, should be 1

RMSProp -> momentum SGD given in [5]

30

ALCF SDL Workshop 2018 Cray Inc. © 2018

Layer-wise Adaptive Rate Scaling (LARS)

● Layer-wise learning rate

● Allows you to use
momentum and weight
decay

● Demonstrated no loss
of accuracy on
ResNet50 with global
batch size of 32K
● Could be 1024 nodes

each with local batch size
of 32

● See reference [1]

31

ALCF SDL Workshop 2018 Cray Inc. © 2018

Useful References

[1] LARGE BATCH TRAINING OF CONVOLUTIONAL NETWORKS --
https://arxiv.org/pdf/1708.03888.pdf

[2] ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP
AND SHARP MINIMA -- https://openreview.net/pdf?id=H1oyRlYgg

[3] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour --
https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h5.pdf

[4] Train longer, generalize better: closing the generalization gap in large batch
training of neural networks -- https://arxiv.org/pdf/1705.08741.pdf

[5] Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15
Minutes -- https://arxiv.org/pdf/1711.04325.pdf

32

https://arxiv.org/pdf/1708.03888.pdf
https://openreview.net/pdf?id=H1oyRlYgg
https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h5.pdf
https://arxiv.org/pdf/1705.08741.pdf
https://arxiv.org/pdf/1711.04325.pdf

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin Example

ALCF SDL Workshop 2018 Cray Inc. © 2018

Training Script Modifications

● Both Horovod and CPE ML Plugin require some
modifications to a serial training script

● For the CPE ML Plugin the changes are
● Importing the Python module

● Initialize the module

● Possibly configure the thread team(s) for specific uses

● Broadcast initial model parameters

● Incorporate gradient aggregation between gradient computation and
model update

● Finalize the Python module

34

ALCF SDL Workshop 2018 Cray Inc. © 2018

MNIST Example

● Dataset of handwritten digits from 0-9

● Simple CNN can be used to identify handwritten digits

● This example is adapted from the TensorFlow official MNIST
example

● https://github.com/tensorflow/models/tree/master/official/mnist

● Modified script included with CPE ML Plugin
● module load craype-ml-plugin-py2/1.1.0

● less $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py

35

https://github.com/tensorflow/models/tree/master/official/mnist

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin - Import

36

● Access the Python API by importing the module

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin - Initialization

● Compute the number of trainable variables in the

model

● Required for the CPE ML Plugin to pre-allocate needed

communication buffers

● Example sets up a single thread team with one thread

37

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Team Configuration

● Set the maximum number of steps (mini batches) to

train for

● Verbose output every 200 steps

● Also set output path to rank-specific location

38

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Broadcast Initial Model

● Broadcast initial model parameter values from rank 0

to all other ranks

● Then assign broadcasted values locally

39

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Gradient Aggregation

● Perform gradient averaging across all ranks between

local gradient calculation and model update

40

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Finalize

● After all training steps are complete clean up data

structures and MPI

41

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Execution Example

● Once the script is modified job launch is just like a typical
MPI job
● Example assumes user has TensorFlow installed in PYTHONPATH or

PYTHONUSERBASE

module load cray-python

module load craype-ml-plugin-py2/1.1.0

export OMP_NUM_THREADS=62

aprun -n4 -N1 -cc none -b python \

$CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py \

--enable_ml_comm \

--data_dir=/lus/theta-fs0/projects/SDL_Workshop/mendygra/mnist_data \

--model_dir=[train dir]

42

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Example Batch Scripts

● Sample batch scripts for tf_cnn_benchmarks
● Adapted from

● https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks

● A suite of CNNs are included

● Batch scripts are available for you to try in:
● Python 2: /lus/theta-fs0/projects/SDL_Workshop/mendygra/cpe_plugin_py2.batch

● Python 3: /lus/theta-fs0/projects/SDL_Workshop/mendygra/cpe_plugin_py3.batch

mkdir /lus/theta-fs0/projects/SDL_Workshop/[username]

cd /lus/theta-fs0/projects/SDL_Workshop/[username]

cp /lus/theta-fs0/projects/SDL_Workshop/mendygra/cpe_plugin_py2.batch .

qsub cpe_plugin_py2.batch

● Please refer to CPE ML Plugin manpage for more details on usage
● man intro_ml_plugin

43

https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks

ALCF SDL Workshop 2018 Cray Inc. © 2018

Thank You!

Questions?

